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Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to
substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki,
and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the
long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better
the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates.
For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure
than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this
hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure.
However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major
source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon
daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is
inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment.
Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct
evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found
in most homes might be too low to be quantified accurately in epidemiological studies. - Environ Health Perspect 1 03(Suppl 8):245-249 (1995)
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Introduction
Epidemiological studies of populations
exposed to ionizing radiation have provided
considerable quantitative information con-

cerning the risks of radiation-induced can-

cer (1-3)-more, perhaps, than is available
for any other human carcinogen. Such data
are invaluable for setting radiation protec-
tion policy and evaluating the late effects of
medical exposures. Epidemiological data
also complement experimental evidence as a

basis for learning about mechanisms by
which cancers develop. Yet, important
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unanswered questions remain regarding
lifetime risks of radiation-induced cancer,
the magnitude of risks from chronic low-
dose-rate exposures, risk from low-level
radon exposures in the home, determinants
of host susceptibility, and molecular mech-
anisms of radiation carcinogenesis. The
epidemiological data are strongest for
populations exposed to high doses of radia-
tion at high dose rates, but such exposures
are uncommon in the general population.
Implementation of effective preventive
strategies requires better understanding of
cancer and other health risks associated
with low-level exposures. Full understand-
ing of lifetime cancer risks attributable to
irradiation requires long-term follow-up of
exposed populations, including those
irradiated at young ages.
Atomic Bomb Survivors
The single most important source of infor-
mation about radiation-induced cancer in
humans has been the Life Span Study
(LSS) cohort of survivors of the atomic
bomb explosions in Hiroshima and
Nagasaki, for which the latest comprehen-
sive reports document cancer incidence
through 1987 (4,5). Continued follow-up
of this study population is essential if we

are to understand lifetime risks of exposure
during childhood and adolescence. This is
illustrated in Figure 1, which is for solid
tumors occurring among males (5). Panel
A shows the fitted excess relative risk
(ERR) of solid tumors at a dose of 1 Sv as a
function of time since exposure, separately
for three different ages at exposure. For
ages 30 and 50 years, the ERR was approxi-
mately constant with increasing time, but
for age 10 at exposure, it decreased with
time from initially high levels. Some
observers have interpreted this decrease in
relative risk as evidence that excess risk dis-
appears with time among persons exposed
during childhood. However, the pattern
looks different when data for the same peo-
ple are plotted on the absolute risk scale
(Figure 1 C). Even for those age 10 at
exposure, the absolute risk increased with
time since exposure. Data in Figure 1D are
expressed in terms of attained age rather
than in years since exposure. The absolute
excess risk at a given attained age (Figure
1D) was almost identical for those who
were age 10 at exposure and those age 30
at exposure. The age 10 at exposure group
had only reached age 50 or so as of the last
follow-up, and we do not know how
patterns of risk will change as these people
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Figure 1. Fitted excess relative risks (A and B) and absolute risks (C and D) for solid tumors in male E

survivors, by years since exposure and attained age. Data are shown separately for three age-at-expo
From UNSCEAR (3), based on Thompson et al. (5), with permission.

pass through ages of high cancer incidence.
Studies of atomic bomb survivors now

under way at the Radiation Effects
Research Foundation in Japan should be
continued so that this opportunity for
lifelong follow-up is not missed.

Medically Irradiated
Populations
It is important to continue to follow other
irradiated groups in addition to those
exposed at Hiroshima and Nagasaki.
Studies of persons given radiotherapy for
benign and malignant disease also have
provided valuable information about
cancer risks due to low-LET radiation.
Ankylosing spondylitis patients treated
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increased with time following irradiation,
but had this population been followed for
only 15 to 20 years, this radiation effect
might have been missed. Other pelvic
organs displayed a different pattern of
excess risk over time (Table 1) (8).

Results for different study populations
complement each other, as they provide
information about risks associated with dif-
ferent types of radiation exposure and possi-
ble modifying effects of host characteristics.
Identical results are not necessarily to be
expected among studies, and differences can
provide important insights about mecha-
nisms of induction of cancer by radiation.

Nuclear Workers
_T____1 Whereas exposures experienced by atomic
70 80 bomb survivors and persons given radio-

therapy usually are of short-duration, occu-

pational, environmental, and diagnostic
medical exposures to ionizing radiation
usually involve chronic or repeated expo-

atomic bomb sure to low doses. These are the types of
)sure groups. exposure that account for most of the radi-

ation exposure in the general population
(9), but cancer risks associated with pro-

tracted, highly fractionated exposures are

ne of the less well understood.
described Because animal data indicate that

s updated cancer risks from penetrating, low-LET
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e doses to the excess relative risk per Sv for all cancers

ler cancer combined are very similar for nuclear

Table 1. Ratio of number of deaths observed (0) due to cancer among women treated with radiation for
metropathia hemorrhagica divided by the number expected (E), separately by time since irradiation.a

10 20 30

Years since first treatment

40

Figure 2. Relative risk of lung cancer (solid line) and
other solid tumors (dashed line) by time since first
treatment among persons irradiated for ankylosing
spondylitis. Redrawn from Weiss et al. (7), with
permission.

O/E
Years since irradiation

Siteof cancer 0-4 5-14 15-24 >25 Total,25

Bladder 0.00 1.12 1.45 4.37 3.02b
Other pelvic organs 0.28 1.62 1.20 1.23 1.31 c

All cancers 0.68 1.16 1.06 1.21 1.15d

'Expected values were calculated based on mortality rates for the Scottish population. Analysis was limited to
ages < 85 years. bp < 0.001. cp = 0.007. dp = 0.02. Data from Darby et al. (8).
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Table 2. Excess relative risk estimates for all cancers combined and for leukemia (exclusive of chronic lymphocytic
leukemia) for nuclear workers from the United Kingdom and United States and male atomic bomb survivors age
> 20 at the time of bombing.

Excess relative risk per Sv, 95% Cl

All cancer
Nuclear workers (U.K. and U.S.) 0.23 (< 0, 0.83)
Atomic bomb survivors (men exposed at ages > 20) 0.33 (0.11, 0.60)

Leukemia (excluding CLL)
Nuclear workers (U.K. and U.S.) 1.7 (< 0, 5.9)
Atomic bomb survivors (men exposed at ages > 20) 6.2 (2.7, 13.8)

CLL, chronic lymphocytic leukemia. Data from UNSCEAR (3).

Table 3. Excess relative risk for lung cancer among underground miners, by average rate of exposure to radon and
radon daughters. Mines are listed in descending order by estimated average exposure rate.

Mine

Port Radium (Northwest Territories)'
Newfoundlandb
New Mexicoc
Ontariod
Malmberget (Sweden)e
Beaverlodge (Saskatchewan)f

Average exposure rate,
WLM/year

109
67

-16
-10

5
5

Excess relative risk,
%/cumulative WLM

0.3
0.9
1.1
1.3
3.6
3.3

WLM, working-level month.aHowe et al. (13). bMorrison et al. (14). cSamet et al. (15). dKusiak et al. (16).
eRadford and St. Clair Renard (17). fHowe et al. (18).

workers and atomic bomb survivors, while
leukemia risk estimates differ by a factor of
about three to four (4,5,10,11). Again,
these data are preliminary, and the esti-
mates have wide confidence intervals. It is
important to continue studies of nuclear
workers and make further comparisons of
this nature.

Radon
Another topic causing much public concern
at the present time is the risk of lung
cancer due to exposure to radon (222Rn) in
the home. Radon and its short-lived
daughter products are the largest source of
radiation exposure to the general popula-
tion (2). Until now, estimates of the risk of
radon-induced lung cancer have been
based on studies of underground miners,
most of whom were exposed at relatively
high levels. Extrapolation of these risk esti-
mates down to the dose range more typical
of residential exposures would suggest that
there are, perhaps, 15,000 radon-induced
lung cancer deaths per year in the United
States (12). However, there are enormous
uncertainties in those estimates.

One of the uncertainties concerns the
effect of exposure rate. Table 3 summarizes
results from six studies of underground min-
ers listed in decreasing order of average
exposure rate. The Port Radium (Northwest
Territories, Canada) and Newfoundland
miners worked in mines that, on average,
had the highest ambient concentrations of

radon, and the Malmberget (Sweden)
miners and Beaverlodge (Saskatchewan)
miners on average experienced the lowest
concentrations of radon. There is a nearly
monotonic inverse association between
average exposure rate and estimates of the
excess relative risk per cumulative working-
level month (WLM). (A working level is
defined as any combination of short-lived
radon daughters in 1 liter of air that will
result in the ultimate emission of 1.3 x 105
MeV of potential o energy, which approxi-
mately equals the x energy released from
the decay of daughters in equilibrium with
100 picocuries of 222Ra (1). A working-
level month is defined as the exposure
resulting from inhalation of air with a

Table 4. Estimates of excess relative risk of lung cancer
among West Bohemian uranium miners, separately by
average rate of exposure to radon and radon daughters.a

Average Excess relative risk per WLMb
exposure Men with exposure
rate, WL Entire cohort rate < 10 WL only
< 2.0c 1.OOC 1.OOC
2.0-3.9 0.41 0.94
4.0-5.9 0.24 1.17
. 6.0 0.05
p (trend) < 0.001 NS

Abbreviations: NS, not significant; WL, working level;
WLM, working-level month. aEstimates are presented
both for the entire cohort and after excluding men
who ever worked in a mine shaft with a concentration
exceeding 10 WL. Data from Tomaek et al. (19).
bRelative to reference category. cReference category.

concentration of 1 working level of radon
daughters for 170 working hours) (1).
Most of the public's exposure to radon is
accrued at a very low exposure rates, lower
than any of the rates for miners shown in
Table 3. Failure to take account of a dose-
rate effect could, therefore, result in a
substantial underestimate of risk to the
general population.

Detailed analyses of lung cancer mortal-
ity among 4320 uranium miners from West
Bohemia revealed a 20-fold decrease in the
excess relative risk per WLM with increas-
ing average exposure rate (Table 4) (19).
The men in this study worked in 19 differ-
ent mine shafts, and radon concentrations
varied widely, both from shaft to shaft and
also within any particular shaft over time, as
engineering changes were introduced to
improve ventilation and reduce the radon
concentration. Most men worked in a vari-
ety of mine shafts, and detailed data were
available about the average radon concen-
tration to which each man was exposed for
every month he was employed in the mines.
In trying to understand and model the
exposure rate effect among these miners, it
was discovered that it was entirely attribut-
able to the small proportion of men who
were ever employed in a mine shaft with a
concentration of radon daughters of 10
working levels (WL) or more, which is an
extremely high concentration.

When these men were omitted from
the analysis, the association between RR
and exposure rate completely disappeared,
even though the average exposure was
still quite high (Table 4). It would be inter-
esting to determine whether a similar
phenomenon occurs in other studies of
radon-exposed miners. If it does, then a
better data set for extrapolating to the gen-
eral population might be obtained by
omitting those men who at any time were
exposed to a very high concentration.

Even if exposure rate effects can be
sorted out, there are other difficulties asso-
ciated with using radon risk estimates for
miners to extrapolate to residential expo-
sures. Among these is the possible role of
other carcinogens in the mine environ-
ment. In a large study of Chinese tin min-
ers exposed to both radon and arsenic, it
was shown that the apparent risks of radon
exposure were substantially reduced when
adjustment was made for arsenic exposure
(20). The role of arsenic and other carcino-
gens until now has not been studied in
great detail among radon-exposed miners.
However, Tomasek et al. (19) were also
able to examine the question to a certain
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Figure 3. Number of lung cancer deaths observed
among West Bohemian uranium miners, divided by the
number expected (O/E) in relation to cumulative expo-
sure to radon and radon daughters. Results are pre-
sented separately for miners who spent 20% or more
of their employment working at the Jachymov mine
and those who spent less than 20% of their time at
this mine. Data are presented both for entire cohort
and after excluding men who ever worked in a mine
shaft with a concentration exceeding 10 WL.
Reproduced from Tomasek et al. ( 19), with permission.

extent for the cohort of West Bohemian
miners. There were no estimates of arsenic
exposure for individual miners, but data
were available on the proportion of arsenic
in the dust at the two mines where the
men were employed. At Jaichymov, which
was the main mine, arsenic levels in the
dust were considerable, while at Horni
Slavkov, a subsidiary mine, they were neg-
ligible. Miners were grouped according to
whether they spent more or less than 20%
of their time at the Jaichymov mine. For
equivalent cumulative radon exposures, the
risk of lung cancer was discernibly greater
among those who were employed at
Jachymov, the arsenic mine, than at Horni
Slavkov (Figure 3), both when the entire
cohort was considered and when analysis

was restricted to men who were only
exposed at rates below 10 WL. Although
this does not prove that arsenic played a
role in the etiology of lung cancer in these
men, it is consistent with what one would
expect if it did and points to the need for
more thorough exploration of the possible
role of other exposures among radon-
exposed miners in the future. Venitt and
Biggs (21) suggested that mycotoxins
might also contribute to lung cancer
excesses observed among miners. Other
sources of uncertainty in generalizations
from the experience of miners to the resi-
dential environment include risks of expo-
sure to infants and children, and to females
as well as males, and joint effects of radon
exposure and smoking(22).

Because extrapolation of radon risks
from exposed miners to the general popu-
lation clearly is going to be difficult and
uncertain however carefully it is done, it
seems important to collect data bearing
directly on the question of risks of residen-
tial radon. Such studies need be large, as
radon exposures tend to be low. In a
recently published Swedish study (23),
investigators obtained an overall risk esti-
mate that is very much in line with the pre-
dictions based on the miner data, but the
confidence interval was wide (Table 5).
Several other large case-control studies are
in progress. It probably will be necessary to
pool results from multiple studies to get a
more definitive answer about risks from
residential radon. Even then, however, it is
questionable whether risks associated with
radon levels encountered in most homes
can be evaluated directly because it is diffi-
cult for epidemiological studies to distin-
guish low-level effects from bias (24). The
task would be simplified if radon-induced
tumors could be identified, such as through
a characteristic mutation in a particular
gene (25-27).

Chernobyl
The reactor accident at Chernobyl in April
1986 resulted in the release of large quanti-
ties of radioactive materials to the environ-
ment and was a catastrophe of enormous
proportions in terms of disruptions in
peoples' lives (28). The full extent of the
health effects will be difficult to document

Table 5. Estimates of the excess relative risk of lung
cancer due to residential exposure to radon and radon
daughters, separately by smoking status.

Excess relative risk
Smoking status, per 100 Bq m-3,
cigarettes per day 95% Cl

Never smoked 0.07 (< 0, 0.35)
< 10 per day 0.16 (< 0, 0.54)
2 10 per day 0.19 (< 0, 0.61)
Total 0.10 (0.01, 0.22)

Data from Pershagen et al. (23).

for several reasons, including uncertainties
about exposures for individuals and diffi-
culties in ascertaining health outcomes in
an unbiased manner. Nearly half the sur-
veyed people from villages between 30 and
300 km from Chernobyl reported having
had an illness that they attributed to radia-
tion exposure, but early clinical and labora-
tory studies did not find evidence to
corroborate these perceptions (28). With
regard to cancer, particular attention
should be paid to the risk of thyroid cancer
among people exposed as children. There is
concern that a large increase in thyroid
cancer seen among children in Belarus
might have been caused by exposure to
radioactive iodines from the accident (29).

Summary
Future epidemiological studies of radiation-
exposed populations should aim to cover
new ground and not simply revisit the
question ofwhether radiation causes cancer,
which has been answered in the affirmative
for most though not all types of cancer (2).
There is particular need for good quantita-
tive information about risks from chronic
low-dose-rate exposures, including radon in
the home. An essential component of risk
quantification is good dosimetry.

The public often overestimates risks of
exposure to ionizing radiation relative to
other common and more hazardous expo-
sures. Residential, occupational, and diag-
nostic medical exposures are potentially
controllable but only at a cost. While it is
desirable to avoid unnecessary radiation
exposures, it might be contrary to society's
best interest to undertake extreme protec-
tive measures that would effect only a small
reduction in risk.
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